Dept. of Computer Engineering
Second Exam, Second Semester: 2014/2015

Course Title: Engineering Analysis II	Date: 7/5/2015	
Course No:	(630262)	Time Allowed: 50 minutes
	No. of Pages: 1	

> NOTES: - Round ALL your calculations to 4 significant digits
> - Angles for trigonometric functions are in radian scale

Please choose your section:

Question 1:

Consider the following data

x	1	1.5	2	2.1	2.6	3
y	3.5	2.1	1.1	1	0.5	0.25

Find the relation between x and y using data linearization for a function of the form $f(x)=C e^{D x}$, then approximate y at $\mathrm{x}=2.5$

Question 2:

a) For the following data, find the second order Lagrange interpolating polynomial $f(x)$ in the simplest form then approximate $f(8)$

x	2	4	6
$\mathrm{f}(\mathrm{x})$	8	12	16

b) Approximate the integration using composite trapezoidal rule with 5 sampling points

$$
\int_{1}^{2} \frac{1}{x\left(1+(\ln x)^{2}\right)}
$$

Write the correct choice for the following questions
(1.5 marks each)

Part	1	2	3	4
Answer				

Consider the following data to answer parts (1) , (2)

x	1	2	3
y	1.5	2.2	3.9

1) Using $2^{\text {nd }}$ order Newton interpolation, the value of b_{2} is:
a) 0
b) 0.5
c) 1.5
d) 2
2) Assume the relation is approximated using $f(x)=x+0.5$, then SSE for this relation is:
a) 0
b) 0.5
c) 0.25
d) 0.7
3) Refer to the figure to approximate $\int_{0.5}^{2.5} f(x) d x$ using composite trapezoidal with three sample points
a) 2.445
b) 2.565
c) 2.390
d) the integral cannot be approximated using trapezoidal rule

4) Using Lagrange interpolation for the points $(a, b),(c, d)$ then $L_{1}(x)=$
a) $\frac{x-a}{c-a}$
b) $\frac{x-b}{b-a}$
c) $\frac{x-c}{c-a}$
d) $\frac{x-b}{c-b}$
